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abstract: Populations living in a spatially and temporally changing
environment can adapt to the changing optimum and/or migrate
toward favorable habitats. Here we extend previous analyses with a
static optimum to allow the environment to vary in time as well as
in space. The model follows both population dynamics and the trait
mean under stabilizing selection, and the outcomes can be under-
stood by comparing the loads due to genetic variance, dispersal, and
temporal change. With fixed genetic variance, we obtain two regimes:
(1) adaptation that is uniform along the environmental gradient and
that responds to the moving optimum as expected for panmictic
populations and when the spatial gradient is sufficiently steep, and
(2) a population with limited range that adapts more slowly than
the environmental optimum changes in both time and space; the
population therefore becomes locally extinct and migrates toward
suitable habitat. We also use a population-genetic model with many
loci to allow genetic variance to evolve, and we show that the only
solution now has uniform adaptation.

Keywords: adaptation, gradient, moving optimum, extinction, load,
cline.

Introduction

While many boundaries to species ranges are caused by
sharp changes in the environment or are driven by inter-
action with other species (Gaston 2003; Bridle and Vines
2007), there is oftentimes no apparent reason for the sharp
spatial limits that are commonly observed. Some species
survive remarkably well when transferred outside their
range (Prince and Carter 1985). More often, though, spe-
cies need to extend their niche via adaption in one or
several traits (table 2.1 in Gaston 2003). There is currently
only a limited understanding of why such adaptation fails
even when the environment changes smoothly in space.
Haldane (1956) suggested that the sharp boundary may
be a result of maladaptive gene flow from central popu-
lations, preventing adaptation in less dense marginal pop-
ulations. This is a likely explanation for limits to adap-
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tation due to highly asymmetrical gene flow when density
changes sharply for extrinsic reasons (as in the mainland-
island model of Kawecki et al. 1997). The second classic
argument for limits to a species range is that genetic var-
iance is insufficient to allow niche extension (see Anto-
novics 1976). Two questions follow from this argument:
how can we quantify such limits, and what constrains
genetic variance in the first place?

Existing studies predicting response to a temporally
changing optimum in structured populations are rather
limited. Most notably, Pease et al. (1989) analyzed evo-
lution where the optimum changed in time and space, as
described by a bivariate Gaussian fitness (in time and
space), assuming no density dependence and that genetic
variance is small and constant. Later, Case and Taper
(2000) allowed for species interactions in an extension of
Kirkpatrick and Barton’s (1997) model; they briefly as-
sessed the response of species range to a sudden change
in environment. More is known about the response of a
single, unstructured population: for a Gaussian-distributed
trait, the lag of trait mean behind the optimum is pro-
portional to the speed of movement of the optimum di-
vided by genetic variance and the strength of stabilizing
selection (Charlesworth 1993; Lande and Shannon 1996;
Bürger 1999; Waxman and Peck 1999).

The additive genetic variance determines the rate of
evolution of quantitative traits. Thus, it is crucial to un-
derstand how such variance is maintained and how it
changes under selection. Observed genetic variance is sub-
stantially higher than we would expect from a simple
mutation-selection balance (see Turelli 1988; Johnson and
Barton 2005). The variance can increase due to a range
of factors, namely frequency-dependent selection, hetero-
zygote advantage, diversifying selection, and temporal fluc-
tuations in the optimum. In a single population, additive
genetic variance maintained by mutation-selection bal-
ance, , reflects the product of genomic mutation rateV̂G

( ) and the width of stabilizing selection, VS; forU p 2nm

multiple loosely linked loci and rare alleles, V̂ ≈G, HC

(Turelli 1984). However, unless stabilizing selection2UVS

is very weak (see Kingsolver et al. 2001g p �V /(2V )i P S
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and “Discussion”), an unrealistically high mutation rate
per locus or a high number of loci of small effect is re-
quired to maintain the variance that we observe (with
heritability , we require ).2h p 0.4 U p 1/10 V /VP S

High levels of genetic variance can be readily maintained
in a spatially heterogeneous environment. For a single lo-
cus, Slatkin (1975) and Nagylaki (1976) showed that a
cline will develop if the environment changes over a scale
that is large relative to the ratio of dispersal over the square
root of intensity of selection per gene, . It also follows1/2j/s
that adaptation to a pocket or a marginal habitat of dif-
ferent environment that is small in terms of is pre-1/2j/s
vented (for a real world example, see Lenormand et al.
1999). Hedrick (2006) gives a nice review of current studies
of adaptation to spatially varying environments; Bridle et
al. (2008) discuss studies on both spatial and temporal
adaptation.

Theoretically, if genetic variance of a quantitative trait
can freely evolve in response to spatially variable selection,
it should at any particular location increase with the extent
of migration across the environmental gradient and the
width of stabilizing selection (Barton 2001). Therefore, the
ability to adapt to temporal change can be significantly
higher in species that are living in a spatially variable en-
vironment. Because migration may be several orders of
magnitude higher than mutation, it may significantly in-
crease local genetic variance even when spatial variability
is low. It is less clear under what conditions and by how
much genetic variance increases when the environment
changes in time; we return to this matter in “Discussion.”

It has been shown by Kirkpatrick and Barton (1997)
that low genetic variance combined with high gene flow
can prevent adaptation to a stable environment when the
optimum varies smoothly in space. Conversely, when ge-
netic variance is unconstrained, there is no direct limit to
species range (Barton 2001). Kirkpatrick and Barton’s
(1997) study jointly follows population dynamics and the
evolution of trait mean due to adaptation to a static spatial
gradient. They find two classes of solutions at equilibrium:
uniform adaptation when the trait mean matches the op-
timum perfectly on the whole range, and the solution,
where the gradient in trait mean is shallower than the
gradient in environmental optimum, such that maladap-
tation increases away from the center and leads to a limited
range. Limited adaptation arises as the environmental gra-
dient steepens relative to genetic variance. Both solutions
are stable when the available habitat is infinite, but if an
expanding population reaches the margins of the suitable
habitat, adaptation collapses from the margins toward a
state of limited adaptation, where the gradient in trait
mean is shallower than the environmental gradient (Kirk-
patrick and Barton 1997). Barton (2001) extended the
model by allowing the genetic variance to evolve. With

this, the population could always adapt to the environ-
mental gradient by increasing its variance, and there is no
equilibrium with a limited range. However, population
density steadily decreases with increasing variation around
the optimum, and eventually, as the gradient steepens, the
population becomes extinct over the whole range.

Here we extend the models described in the previous
paragraph to allow the environmental optimum to vary
in both time and space. Via continuity with the static case,
we would expect that when genetic variance is fixed, there
would still be two solutions, either with uniform adap-
tation or with adaptation over only a limited range. When
the optimum changes in time, we suppose the population
would track the changing optimum through both adap-
tation and migration (unless the environment changes too
fast in either space or time, leading to extinction). In re-
lation to the static case, we are interested in whether, when
the environment also varies in time, the gradient in trait
mean changes (thereby leading to a change in the size of
the species range), and whether there is any change to the
critical spatial gradient (above which limited adaptation
occurs). Subsequently, we address the evolution of genetic
variance with a population genetic model, assuming that
the quantitative trait under selection is determined by nl

loci with approximately additive effects and under weak
selection. With this, genetic variance can increase with
migration across the spatial gradient. We address whether
the genetic variance now also increases with the rate at
which the optimum changes in time and how temporal
change in the optimum affects the species’ range.

Adaptation to a Linear Environmental Gradient Moving
in Time: Phenotypic Model

Following Pease et al. (1989), the change of the mean
phenotype z can be written as

2 2¯ ¯ ¯ ¯�z j � z � ln (n) �z �r
2p � j � V . (1)A2 ¯�t 2 �x �x �x �z

This equation describes the effects of migration and selec-
tion on a population with density n and with quantitative
trait (z) under selection. The first term represents migration,
approximated by diffusion with variance j2. The second
term describes gene flow from populations that vary in
population density n. The third term describes the effect of
selection on a normally distributed character z with additive
genetic variance VA (Fisher 1930; Lande 1976; is the meanr̄
[Malthusian] fitness, which is equal to in continuous timer̄
and in discrete time): 2¯ ¯ ¯∼ log (W ) �z/�t p h V �r/�z pP

; here, VA is additive genetic variance, VP is the phe-¯ ¯V �r/�zA
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Figure 1: Distribution of phenotypes (W) for the logarithmic model with a spatially and temporally varying environment: left, uniform adaptation;
right, limited range. Distance X is scaled relative to the standard deviation of dispersal distance, trait Z is scaled relative to the strength of selection,
and time T is scaled relative to the rate of return to equilibrium; see equation (4). The top row shows the equilibrium density when the optimum
is stable in time ( ); the bottom row shows the density when the optimum is changing at speed at time . Notice the decrease∗ ∗k p 0 k p 0.2 T p 20
in density for uniform adaptation, where the lag behind the optimum is about . The environmental optimum is shown by the solid line; the∗a p 1
dashed line depicts the trait mean. Other parameters, measuring genetic and dispersal load, are kept the same throughout this figure: andA p 1/4

.B p 1

notypic variance, and h2 is the narrow-sense heritability
( ).2h { V /VA P

We assume that there is an optimal value v(x, t) for the
trait z(x, t) that is changing at steady and independent
rates through space (x) and time (t):

v(x, t) p bx � kt, (2)

where b is the gradient of optimum in space and k is the
rate of change of the optimum in time. The habitat is one-
dimensional, and the position on it is denoted by x.

Following Kirkpatrick and Barton (1997), one would
naturally start with a simple population regulation, where
population density just reflects mean fitness, because this
readily leads to exact results. In appendix A, we explain
how models with joint regulation converge to the equi-
librium solution of this simple model.

It is more realistic to assume that there is a joint reg-
ulation of trait mean (eq. [1]) and population density
(Kirkpatrick and Barton 1997). The population grows lo-
cally at rate , and migration is approximated by diffusionr̄
with variance j2:

2 2�n j � n
¯p � rn. (3)

2�t 2 �x

The average fitness gives the intrinsic rate of increase
of the population, . Fitness and the intrinsic¯ ¯r(n, z) r(n, z)
rate of increase depend on both the population density
(ecological component, re) and adaptation in the trait (ge-
netic component, rg): , .¯ ¯ ¯r p r (n) � r (z) r p r (n) � r (z)e g e g

The genetic component of fitness declines with the dis-
tance of the trait from the optimum: r { �(z �g

, (the2 2¯v(x, t)) /(2V ) r p �(z � v(x, t)) /(2V ) � V /(2V )S g S P S

last term arises as the phenotypic variance V {P

for any ). The2 2 2 2 2¯ ¯ ¯(z � z) p z � z p (z � v) � (z � v) v

variable VS is the variance of stabilizing selection around
the optimum; the strength of stabilizing selection is .1/VS

We assess both a “logarithmic model” of density de-
pendence, where fitness is very high for low densities
( ): , and a “logistic model,”n K K r p �1/g log (n/K)e

where the environmental growth rate is defined as r pe

, K reflects the carrying capacity of the en-r [1 � (n/K)]m

vironment, g is the intensity of density-dependent regu-
lation, and rm gives the maximum growth rate. The log-
arithmic density dependence converges to “simple”
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Figure 2: Equilibrium values of scaled gradient in trait mean, b∗, for
logarithmic growth rate (thick lines) and simple regulation (thin lines),
as functions of the scaled environmental gradient, B. B 2 is the load due
to dispersal across the gradient, when time is scaled relative to the rate
of return to equilibrium. The solution with always exists, and∗b p B
the solution with limited adaptation ( ) exists when the spatial∗b ! B
gradient is steeper than the critical gradient Bc (dots on B-axis; see also
fig. 3). The thick line shows the solution for joint regulation with log-
arithmic density dependence, ,2 2 2 ∗2B f (1 � f) p A (1 � f) � Af b p

. The equilibrium value for imperfect adaptation under joint regulationBf

tends to the one with simple regulation as . When populationA r 0
density is just given by mean fitness, as under simple regulation, the
gradient in trait mean for limited adaptation is ∗b p B/2[1 � (1 �

(thin line). Equilibrium gradients in trait mean that are always2 1/22A/B ) ]
unstable (both below and above equilibrium, ) are shown as∗b p B
dashed lines. The dots illustrate the critical gradients Bc for both simple
and logarithmic regulation (see fig. 3).

regulation (app. A) near equilibrium ( ), and as suchn r K
it allows an exact solution. The logistic model has a more
realistic growth rate at low density, which, in contrast to
the logarithmic model, leads to a threshold of rates of
change in space and time where the population becomes
extinct.

It is useful to reduce the number of parameters by re-
scaling time, distance, and trait. Following Kirkpatrick and
Barton (1997), we therefore introduce

∗T p r t,

∗2r�X p x , (4)
2j

z
Z p .∗�r VS

Time is scaled to the strength of density dependence, de-
fined as (Kirkpatrick and Barton∗ ¯r { �n dr/dnF ˆnpnm

1997), where is the density at carrying capacity (i.e.,n̂m

when the trait mean matches the optimum). For the log-
arithmic model, .∗r p 1/g

We thus have three parameters, A, B, and k∗:

VAA p ,∗r VS

bj
B p , (5)∗�r 2VS

k∗k p .∗3�r VS

The new parameters A, B, and k∗ describe three kinds of
“load,” that is, the decrease of mean fitness due to the
standing genetic variance, the spatial gradient, and the
temporal change in the optimum. When time is scaled
relative to the rate of return to the equilibrium (r∗), A/2
is the standing genetic load due to variance around the
optimum, B2 is the load due to dispersal across the spatial
gradient, and is the load due to temporal change in∗2k /2
the optimum over the characteristic time . The∗Dt p 1/r
load components are defined as the expected loss of the
mean Malthusian fitness ( ) due to any of the above givenr̄
factors.

In addition, we scale the population density so that it
is equal to 1 when the trait mean matches the gradient:

(in the logarithmic model,∗ ∗N p n/K K p K exp [�
; in the logistic model,2g V /(2V )] p K exp [�A/(2h )]P S

).∗ ∗ 2K p K r /r p K{1 � [A/(A � 2h )]}m

For joint regulation of trait mean and population den-
sity, we obtain (from eqq. [1] and [3]):

2�Z � Z �Z2 �N ∗p � � A(Z � BX � k T), (6)
2�T �X N �X �X

2�N � N
p � RN, (7)

2�T �X

where the environmental optimum is now ∗v p BX �
. The scaled growth rate is, for the logarithmic∗ ∗¯k T R p r/r

model,

1 ∗ 2R p � log (N) � (Z � BX � k T) , (8)
2

and, for the logistic model,

1 ∗ 2R p 1 � N � (Z � BX � k T) . (9)
2

For the static case ( ), these equations correspond∗k p 0
to equations (8), (9) and below in Barton (2001).

We search for an equilibrium solution in the form of a
traveling wave, where transforms the spatial∗U p X � c T
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Figure 3: A solution on a limited range exists only for steep gradients, : black thick, dashed, and thin lines show the critical gradient, Bc, forB 1 Bc

logarithmic, logistic, and simple regulation, respectively. A critical gradient for simple regulation, (solid line), is also the approximation1/2B p (2A)c

for the joint regulation for small values of A. is the load due to standing genetic variance when time is scaled relative to the rate of return toA/2
equilibrium. The exact formula for the logarithmic model is , and from the approximation for a logistic3/2 2 1/2B p 1/4[20A � (1 � 8A) � 1 � 8A ]c

model (using a Gaussian density at equilibrium ) we obtain2 2 2 ∗2 2 3/22B f (1 � f) p A /2(1 � f) � Af(1 � a /2) B ≈ 1/4[20A � 2(1 � 4A ) � 2 �c

for small values of k. In the simple and logarithmic models, the critical gradient does not depend on the rate at which the optimum changes2 1/24A ]
in time, and the dependence is weak for the logistic model. The blue dotted line is the estimated extinction gradient for logistic growth rate and
imperfect adaptation, ; hence, the area between the dotted and dashed lines delimitates the region where a solution with limited1/2B p (2 � A)/2e

range exists for the logistic model. In the logarithmic model, density as , so the extinction gradient depends on the (arbitrary) choiceN r 0 B r �
of density, Ntr, which would be deemed as subcritical. Extinction gradients are discussed in the text and in figure 6. Note that the solid lines for Bc

in the figure are the same as in Barton (2001), but the dashed line for the logistic model differs because here we do not assume that B is large
when estimating Bc.

coordinate with the distance traveled over time T, and the
speed of the traveling wave is c∗. Now the scaled lag of
trait mean behind the optimum is a function of a single
variable, U: , where a∗ measures the∗ ∗Z � v p f(U) � a
lag load (Maynard Smith 1968) at the center of the range
(or anywhere for a uniform solution). The logarithmic
model now gives an exact solution with the population
density of the form ; for the logistic model,

2 ∗∗ �U z /2N p n e1

we get only an approximate solution using ∗N ≈ n (1 �1

in equation (7). Just as when the environmental2 ∗U z /2)
gradient is fixed in time (Kirkpatrick and Barton 1997),
we find two classes of solutions: uniform adaptation along
the environmental gradient and, when the loss of fitness
due to dispersal across the spatial gradient is sufficiently
large ( ), a limited adaptation, where density declinesB 1 Bc

away from the center. Both solutions with uniform and
limited adaptation can be described jointly by the follow-
ing formulas, which are exact for the logarithmic model
but are only approximations for the logistic case. Later we
discuss the cases of uniform and limited adaptation in
detail.

At equilibrium, the lag load caused by the temporally
changing optimum, relative to r∗, is , and∗2 ∗1/2 a a p

. Here, describes the∗ 2 ∗k /[A � (2B /A)f(1 � f)] f { b /B

degree of adaptation in the gradient of trait mean, which
stays the same (or close to) that found in the static model.
The trait mean adapts at a rate∗ ∗ ∗Z p b X � q T � a

.∗ ∗ ∗ ∗q p k � c (B � b )
For limited adaptation, the range shifts at a rate ∗c p

for . When the gradients match ( ),∗2a Bf/A f ( 1 f p 1
the solution is uniform with respect to U; the range extends
along the whole gradient and for any point density,

. The rate of adaptation then simplifies to∗ ∗c p k /B
.∗ ∗q p a A

Whereas the above formulas apply to both the loga-
rithmic model (exactly) and the logistic one (as an ap-
proximation), the equilibrium population density differs:
for the logarithmic model, the density is N p

; for the logistic model, the density is
∗ ∗2 2 ∗�z �a /2�U z /2e N ≈

. Here, is the in-
2 ∗∗ ∗2 �U z /2 ∗(1 � z � a /2)e z p A(1 � f)/2f

verse of the variance in population density along the scaled
space U: is a measure of the width of the species∗1/21/z
range.

Uniform Adaptation

The formulas above simplify considerably when adapta-
tion is uniform (see fig. 1, left), so that spatial gradients
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Figure 4: Scaled rate of adaptation, q∗, and the speed of a traveling wave, c∗, for the solution with limited range . The solid line is the exact∗b ! B
solution for logarithmic growth rate, whereas the dashed line is an approximation. The scaled rate of adaptation is approximately ∗ ∗q ≈ k A /(1 �

. The scaled lag of trait mean behind the optimum at equilibrium is ; hence, (not shown). With uniform adaptation,∗ ∗ ∗ ∗A) a p q /A a ≈ k /(1 � A)
the trait mean tracks the optimum, matching its rates of change in both space and time , and the scaled lag is∗ ∗ ∗ ∗ ∗b p B q p k p 0.7 a p k /A
(not shown). The scaled rate at which the point (e.g., the center of) population density moves through space is . The dotted∗ ∗ 2c ≈ k /B(1 � A/2B )
line depicts the solution for uniform adaptation, where any point moves at speed . B measures the load due to dispersal across the gradient;∗ ∗c p k /B
A measures the load due to standing genetic variance. For the left column, ; for the right column, .B p 1 A p 0.1

in the trait mean and the environment are equal ( ∗b p
). The rate of adaptation in trait mean matches the rateB

of a temporal change of the environment, . The∗ ∗q p k
scaled trait mean, , lags behind the optimum by a∗, lead-Z
ing to a load of . The scaled lag of the trait mean∗21/2 a
behind the optimum increases linearly with the scaled rate
of temporal change: . In the original units, we∗ ∗a p k /A
recover ; this is the same for unstructured pop-a p kV /VS A

ulations (Lande and Shannon 1996).
The population density for uniform adaptation is

for the logarithmic model and
∗2 2�1/2 k /Aˆ ˆN p e N p 1 �
for the logistic model. When genetic variance∗2 21/2 k /A

is fixed, uniform adaptation is possible on arbitrarily steep
spatial gradients: in principle, the only limitation comes
from phenotypic load (with logistic growth rate,

must be greater than the maximum growth rate,V /(2V )P S

rm). However, in fact, the uniform adaptation is prone to
collapse when the spatial gradient is steep, , as weB 1 Bc

discuss later.
When the cost k∗2 due to the optimum changing in time

is large relative to the genetic load scaled by the strength
of density dependence A, a uniformly adapted population
fails to survive. Under the logistic regulation, the popu-
lation becomes extinct when the cost due to temporal

change in the optimum is greater than . Loga-∗ 1/2k ≈ 2 Ae

rithmic regulation is likely to be less relevant to extinction
thresholds because the growth rate increases without
bound as the density approaches 0.

When we scale the population density back∗n p N/K
to the original units, we uncover the trade-off between the
phenotypic load and the lag load , which2 ∗2 ∗V /(2h V ) a r /2A S

decreases with the additive genetic variance VA. When ad-
aptation is uniform, the genetic component of fitness and
the population density is highest when V pA

, as predicted for an unstructured population2 2 2 1/3(2k h V )S

by Lande and Shannon (1996). The rate of temporal
change, which leads to extinction in the logistic model, is
in the original units , which is in agree-∗ 1/2 2k p (2r /V ) h Ve S P

ment with the result for an unstructured population (see
eq. [11] in Lynch and Lande 1993).

Limited Adaptation

Whereas uniform adaptation confirms the earlier predic-
tions for panmictic populations, this is not the case when
adaptation is limited ( ); see the right-hand∗f p b /B ! 1
side of figure 1. This solution emerges when the spatial
gradient, B, is sufficiently steep relative to the scaled genetic
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Figure 5: As the optimum moves in time, the equilibrium gradient in
trait mean, b∗, stays close to that found in the static case if the population
can persist. The equilibrium values with logistic regulation in a static
environment ( ) are shown in black; solutions for the scaled ratek p 0
of temporal change of are shown in red. Lines refer to analytic∗k p 0.5
results, and dots refer to numerical solutions. The dashed line depicts
the prediction for steep gradients: . In a static environment∗ 1/2b p A/2
(black), the uniform solution (with ) always exists, the solution∗b p B
with limited adaptation ( ) exists when the spatial gradient B is∗b ! B
steeper than the critical gradient (see figs. 2 and 3), and bothB ≈ 0.66c

are locally stable on the infinite range. In numerical solutions (dots),
however, the adaptation collapses from the margins whenever the solution
with limited adaptation exists (and even for slightly shallower spatial
gradients, B: the gradient in trait mean, b∗, is concave rather than con-
stant, as assumed in the depicted analytical approximation). Note that,
when gradient is too steep ( ), a population with limited adaptationB 1 Be

cannot persist ( for decreases to·1/2 ∗B ≈ [(A � 2)/(2) ] p 1.56 k p 0e

for ; see text). A uniformly adapted population cannot· ∗B p 1.52 k p 0.5e

adapt to a temporal change faster than . Parameters:·∗ 1/2k ≈ 2 A p 0.28e

, (black), and (red). The numerical solutions∗ ∗A p 1/5 k p 0 k p 0.5
are run on a spatial lattice with spacing and the time step isdX p 1/16

(so that consistently, with the scaled model, migration is2dT p dX /4
), and there is no migration over the margins (re-2m p 2dT/dX p 1/2

flective boundary conditions).

Figure 6: Population density for the uniform population (where ∗b p
) decreases as fast as the optimum moves: for the loga-

∗2 2�1/2 k /AB N p e
rithmic model (solid black line), and ( ) for the logistic∗2 2N p 1 � 1/2 k /A
model (dashed black line, ). As the cost of temporal change,∗ 1/2k ≈ 2 Ae

measured by k∗, increases, local population density becomes higher for
a population adapted to a limited range (where , blue lines), because∗b ! B
the population can slide along the environmental gradient. The cost of
temporal change (k∗) when local population density becomes higher for
the population with limited adaptation than for the uniform one increases
with A (not shown). Parameters: , .A p 1/5 B p 0.7

variance, A: . Now, as the gradient in trait meanB 1 B (A)c

is much shallower than the environmental gradient, the
population density decreases away from the center, leading
to a limited species range. As the optimum changes in
time, the trait mean adapts more slowly than the envi-
ronment changes ( ), and the species range shifts∗ ∗q ! k
as the population moves toward the habitat to which it
was previously adapted.

With logarithmic regulation, the gradient in trait mean,
b∗, is independent of the speed of movement of the opti-
mum, k∗. The gradient in trait mean b∗ stays shallower than
the environmental gradient B following a cubic equation
for : (see fig. 2).∗ 2 2 2f { b /B 2B f (1 � f) p A (1 � f) � Af

It follows that a solution with limited range exists when
, which, for2 3/2 1/2B 1 B p 1/4[20A � 8A � (1 � 8A) � 1]c

small A, occurs approximately when or1/2B 1 (2A) V !A

in the original units (see fig. 3). Note that this2 21/4 gj b
approximate formula is the same as the exact result for the

gradient in trait mean under simple population regulation
(eq. [A2]). In contrast to the simple and logarithmic reg-
ulations, the approximation for the logistic model shows a
weak dependence on the rate of temporal change, although
the deviation is smaller than can be detected numerically
(see fig. 5). It is worth noting that, although overall density
declines with increased rate or cost of temporal change (k,
k∗), this does not directly reduce the width of species range:
for example, two standard deviations of N(X) is ,∗1/22/z
where and the degree of adaptation, f,∗z p A(1 � f)/(2f)
is independent of k∗.

The rate of adaptation increases with the standing ge-
netic load (A): ∗ ∗ 2 2 2 ∗q p k A /[A � 2B f(1 � f)] ≈ k A/(1 �

(approximately for small A; see fig. 4, top left). Un-A)
expectedly, the rate of adaptation hardly depends on the
effective gradient B (fig. 4, top right). The scaled lag of
trait mean behind the optimum is simply . The∗ ∗a p q /A
population is centered at , and the rate at which∗X p c T
the population moves in space is ∗ ∗ 2c p 2Bfk /[A �

, which increases as the2 ∗ 22B f(1 � f)] ≈ k /B[1 � A/(2B )]
standing genetic load (A) increases and decreases as the
effective gradient B gets steeper (fig. 4, bottom row).

Assuming that favorable habitat is available, the decline
in density is now much less sensitive to k∗ than it was
when adaptation was uniform. In contrast, the degree of
maladaptation increases quite quickly with the dispersal
load, B2. The critical rate of change of environment in
space (and time) when the population with logistic reg-
ulation becomes extinct is given by 1/2B ≈ (A � 2)/2 �e
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Figure 7: Simulations (dots) and predictions (dashed lines) for the two-
allele model with logarithmic regulation match well. At the top, the lag
of the trait mean behind the optimum matches the analytical solution
shown by the dashed line , where (in the original∗ ∗ 1/2a p k /V V p 2 B
units, ). In the middle, genetic variance stays close to pre-a p kV /VS A

diction for a fixed gradient, (rescaling back to the original1/2V p 2 B
units, ). At the bottom, population density at equilibrium1/2V p jbVA S

is . The dots show results of a stepping-stone model
2 ∗2 2�1/2 A/h �k /An p Ke

on a spatial lattice with range and spacing dX. In the scaledA�X , X Sm m

model, the time step must be , where is2 2dT p j /2 p mdX /2 m ≤ 1/2
the migration rate. Parameters: , number of loci ,B p 1/2 n p 20l

, , , , and (note that we display2dX p 1/2 m p 1/2 X p 50 K p 1 h p 1m

the density n(x) in the original units). Cline shapes and more details of
the equilibrium solution are shown in figures 8 and 9.

(where∗2 1/2 2 ∗3 ∗2 3k /(2 4)(1 � A � 3/4 A ) � O(k ) � k O(A )
O(x y) refers to terms of the “order of ” xi for ). Ini ≥ y
terms of the original units, we recover 1/2b j/V ≈ 2r �e S m

. The extinc-2 2 2V /V (h � 1) � 1/4 k [r � V /V (1/2 � h )]P S m P S

tion gradient increases with the genetic load ∗Ar /2 p
both because of the static term and because the2h V /(2V )P S

decrease due to temporal change (last term) becomes
smaller. Note that, for the static case ( ), this formulak p 0
corrects a typographical error in Kirkpatrick and Barton
(1997; eq. [A5]), as their scaling uses genetic load A rather
than (as stated in their eq. [11a]; this was mentionedA/2
earlier by Case and Taper 2000).

Transition: The Critical Gradient

The critical rate (gradient) of change of the optimum in
space, above which uniform adaptation may collapse, does
not change significantly with the rate at which the optimum
moves in time, and it depends only on standing genetic
variance. For both models of density dependence that we
assessed, the critical gradient is close to (see1/2B p (2A)c

fig. 3), as shown previously for a static optimum by Kirk-
patrick and Barton (1997) and Barton (2001). In the original
units, limited adaptation emerges approximately when the
change in spatial optimum over one dispersal range, bj,
relative to the standard deviation of genetic variance, ,1/2VA

is larger than twice the square root of the strength of density
dependence: .2 1/2 ∗1/2bj/(h V ) 1 2rP

Both uniform adaptation and limited-range solutions
are locally stable on an infinite range (see app. B); however,
as the spatial gradient steepens above the critical gradient
Bc, uniform adaptation becomes increasingly prone to col-
lapse toward the limited adaptation due to perturbations
of the uniform solution. Such a collapse is triggered by
the imposed reflective boundary conditions at the margins
of the available habitat: this effect can be important in
nature when there is a rigid boundary to the habitat (e.g.,
a river), so that dispersal—and hence, maladaptive gene
flow—is reduced at the margin. Density of a population
adjacent to the boundary then increases, increased gene
flow to the neighboring population (closer to the center
of the range) leads to a drop in a density there, and,
eventually, the whole population collapses to the regime
with limited adaptation (see Kirkpatrick and Barton 1997;
Polechová and Barton 2005). When the cost of temporal
change (k∗) is large, limited adaptation may constitute the
only way a population can survive: this is because the lag
of trait mean behind the optimum is actually smaller, be-
cause populations with limited adaptation move faster
through space (see figs. 4, 6).
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Figure 8: Illustration of the shape of allele frequencies (p) at time
(top) and (bottom). At equilibrium, the cline shape isT p 5 T p 70

, where the scaled cline width is
∗�4/W(X�c T)p̂(X ) p 1/(1 � e ) W p

and the clines move across the space X at a speed1/2 ∗4(n /A ) c pl m

. The allelic effect is scaled as , and the maximum∗ ∗k /B a p a p BX /nm l

scaled variance is . Fixing a∗ and Am, and taking a2 ∗A p 1/2 a n /(r V )m l S

higher number of loci than can fix in the static case, , does∗n 1 BX /al m

not lead to a higher number of diversified loci (and thus higher variance).
Parameters are as they are in figure 7; .∗k p 0.3

Figure 9: Scaled lag of the trait mean behind the optimum, a∗, scaled
variance V, and the population density n(X ) vary periodically as the
optimum is matched by a finite number of loci. Parameters are as they
are in figure 7; , .∗k p 0.3 T p 70

Adaptation to a Linear Environmental Gradient Moving
in Time: Population Genetic Model

In order to relax the assumption of fixed genetic variance,
we need a model with explicit determination of a trait; for
comparison with the phenotypic model above, the trait
distribution should be (close to) a Gaussian. We chose a
two-allele model (Barton 2001) where the trait under se-
lection is determined by nl independent biallelic diploid
loci of additive effect (with frequencies qi and pi and effects

and ). The trait mean is ,
n¯�a /2 a /2 z p � a (p � q )i i i i iip1

and variance at linkage equilibrium is .
n 2V p 2 � a p qA i i iip1

The cline shape in a static environment ( ) hask p 0
been derived by Barton (1999, 2001), with the assumption
that clines have the same form and are distributed in space
so that the trait mean matches the gradient. Substituting
in equation (1) with for the logarithmic model as definedr̄

below, equation (3) gives the rate of change of allele fre-
quency:

2 2�p j � p � log (n) �pi i i2p � j
2�t 2 �x �x �x

2a
� p q (p � q � 2d) � m(p � q ), (10)i i i i i i2VS

where , m is the mutation rate (which is¯d { (z � v)/a
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Table 1: Variables and parameters, original units

Variable Parameter

z Phenotypic trait
x Spatial axis
t Time
n(x, t) Population density
z̄(x, t) Trait mean
w(z, x, t) Phenotypic density
v(x, t) Ecological optimum, v p bx � kt
b Spatial gradient
f Degree of adaptation, f { b/b
j Standard deviation of dispersal distance
k Rate of temporal change
VP Phenotypic variance
VA Additive genetic variance
h2 Heritability, 2h { V /VA P

VS Variance of fitness due to stabilizing selection; strength of stabilizing selection is 1/(2V )S

K Measure of carrying capacity
b Spatial gradient in trait mean ( )z̄ p bx
a Lag of the trait mean behind the optimum
q Rate of adaptation in trait mean
c Speed of traveling wave through space x
u Transposed space, u p x � ct
z Inverse of variance of population density n along spatial axis x
r (z, x, t) Fitness of phenotype z at location x and time t; defined below equation (3)
r (x, t)e Ecological component of fitness (density dependent)
r (z, x, t)g Genetic component of fitness, given by adaptation of the trait z to the optimum v

¯ ¯r (z, x, t) Fitness of mean phenotype at location x and time tz̄
r̄ (z, x, t)g Genetic component of mean fitness, given by adaptation of the trait mean to the optimum vz̄
r∗ Rate of return to equilibrium
g Intensity of density dependence (with simple and logarithmic regulation)
rm Maximum growth rate in the logistic model
nl Number of loci
gm Mutation rate
ai Allelic effect at locus i
pi, qi Allele frequency at locus i

assumed to be symmetric), and . Note that nowa p ai

the genetic variance changes with allele frequency, so we
get an extra term arising from .¯ ¯(p � q )/2V �r/�zi i S

For the static case, Barton (2001) showed that at the
spatially uniform equilibrium with no mutation, allele fre-
quency (centered at ) has a form ˆx p 0 p[x] p 1/{1 �

(we set ) where the width of theexp [�(4/w)x]} a p ai

cline is . The variance contribution due2 2 1/2w p 4(j V /a )S

to one locus is , obtained by inte-2 1/2V p 2a(j V )G, n p1 Sl

grating the variance formula over space, with .ˆp r p (x)i

To match the spatially variable optimum v, the additive
genetic variance at equilibrium is , since2 1/2V̂ p b(j V )A S

there must be clines per unit distance (as each clineb/(2a)
shifts the trait mean by 2a); the genetic variance is main-
tained by the dispersal across the gradient, and it is in-
dependent as to the number of loci. In the scaled model
(see app. C), we get .∗ 1/2V { V /(r V ) p 2 BA S

As the optimum changes in time, allele frequencies will

need to move in space. We are again looking for a trav-
eling-wave solution where the allele frequency, p(x, t) p

, is solely a function of a new variable (andp(u) u p x � ct
, ):�/�x p d/du �/�t p �c d/du

2 2dp j d p d log (n) dpi i i2�c p � j
2du 2 du du du

2ai� p q (p � q � 2d) � m(p � q ), (11)i i i i i i2VS

and where the allele frequency (which was, at time
, centered on ) has a formt p 0 u p 0 p(u) p 1/{1 �

. Then, and 2 2exp [�(4/w)u]} dp/du p (4/w)pq d p/du p
, so with no mutation there is a spatially2(4/w) pq(p � q)

uniform solution for a given , where¯d p (z � bx � kt)/a
and .2 2 1/2 2w p 4(j V /a ) c/d p wa /(4V )S S

The cline shape stays the same as it is in the static case:
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Table 2: Variables and parameters, scaled

Variable Parameter

Z Phenotypic trait, ∗ 1/2Z { z/(r V )S

X Spatial axis, ∗ 2 1/2X { x(2r /j )
T Time, ∗T { r t
N(X, T ) Population density, ∗N p n/K
Z(X, T) Trait mean
W(Z, X, T ) Phenotypic density

∗v (X, T ) Ecological optimum, ∗ ∗v p BX � k T
B Spatial gradient, ; dispersal load, relative to the rate of return to equilibrium, r∗, is B2∗ 1/2B p bj/[r (2V ) ]S

f Degree of adaptation, ∗f p b /B
k∗ Rate of temporal change, ; the load, relative to r∗, is∗ ∗3 1/2 ∗2k p k/(r V ) k /2S

A Additive genetic variance, ; standing (genetic) load, relative to r∗, is∗A p V /(r V ) A/2A S

K∗ Measure of carrying capacity
b∗ Spatial gradient in trait mean ( )∗Z p b X
a∗ Lag of the trait mean behind the optimum, ; lag load, relative to , is∗ ∗ 1/2 ∗ ∗2a p a/(r V ) r a /2S

q∗ Rate of adaptation in trait mean, ∗ ∗3 1/2q p q/(r V )S

c∗ Speed of traveling wave, ∗ ∗ 2 1/2c p c[(2/(r j )]
U Transposed space, ∗U p X � c T
z∗ Inverse of variance of population density N along spatial axis X, ∗ 2 ∗z p zj /(2r )
R(Z, X, T ) Fitness of phenotype Z at location X and time T
R(Z, X, T ) Fitness of mean phenotype at location X and time T; equations (8) and (9)Z

as the optimum changes in time, the clines uniformly shift
in space at a rate c. We find the solution only with uniform
adaptation, where the rate of change in the trait mean
matches the change in the optimum ( ). Hence, weq p k
must have , and the lag of trait mean behind thec p k/b
optimum is . The number of clines re-1/2a p k V /(bj)S

quired to match the optimum at any particular time stays
the same as in the static case at , and hence theb/(2a)
resulting variance stays at (without mu-2 1/2V̂ p b(j V )G S

tation and under linkage equilibrium); as in the static case
(Barton 2001), it is independent of allelic effect or numbers
of genes. The lag of the trait mean is therefore a p

, in agreement with the prediction for the pheno-ˆkV /VS G

typic model.
We test the robustness of the predictions by numerically

iterating the two-allele model, following joint evolution of
clines (and hence that of mean and variance) and popu-
lation density, as described by equations (C1) and (7). All
clines evolve independently, and so there is no linkage
disequilibrium. Initially, the population has no spatial ad-
aptation: allele frequencies at time 0 are uniform in space
and almost fixed at 0 or 1, with uniform distribution of
deviations ranging from 0 to 0.01. Over time (see fig. 8),
allele frequencies diversify across the range to match the
optimum (fig. 9).

The population evolves to be uniformly adapted, with
the gradient in trait mean matching the optimum and
lagging behind by ( in the original∗ ∗a p k /A a p kV /VS A

units), matching the predictions for the phenotypic model
(see top rows of figs. 7, 9). Scaled genetic variance V stays

very close to the prediction (above), (figs. 7, 9,1/2V p 2 B
middle rows). Because genetic variance does not increase
above the static equilibrium when the optimum changes
faster in time, population density decreases toward 0 when
the loss of fitness due to temporal change is too large
relative to the standing genetic variance (fig. 7). The var-
iance does not increase above the static equilibrium even
when we add mutation to the model. The rate of decrease
of population density obviously quantitatively differs be-
tween the logistic and the logarithmic models; for the lo-
gistic model, population density declines faster with k∗,
leading to extinction at .∗ 1/2k ≥ 2 A p 2B

Discussion

When the environment varies in both time and space, how
fast do population traits evolve and how does the species
range change in size and position? In panmictic popula-
tions, it is predicted that the rate of adaptation matches
the rate of change in time and the trait mean lags behind
the optimum by a constant delay (Charlesworth 1993;
Lande and Shannon 1996; Bürger 1999; Waxman and Peck
1999). These predictions agree with those of our spatial
model when the adaptation is uniform in space. If this is
not the case, and if gradient in trait mean is shallower
than the environmental gradient, then the rate of adap-
tation is considerably slower (see fig. 4) and the population
moves to the habitat optimum to which it was previously
adapted. If this was not available, then the population
would become extinct. Perhaps surprisingly, the extent to
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which the population trait mean matches the spatial gra-
dient is the same as it is in the static case (Kirkpatrick and
Barton 1997). Only when variance can evolve freely is the
adaptation always uniform. Interestingly, the variance is
the same as when it is maintained by dispersal across the
spatial gradient in the static case (Barton 2001).

Whether a population can adapt to an unlimited range
depends on the dimensionless parameters A and B, and
its ability to respond to change through time depends on
the scaled parameter k∗. These three parameters can be
thought of as three kinds of genetic loads, each scaled
relative to the strength of density dependence, r∗. The
equation is the standing genetic load due to geneticA/2
variance around the optimum, B2 is the loss of fitness when
an optimally adapted population shifts by one dispersal
range, and, similarly, is the loss of fitness when an∗2k /2
optimally adapted population shifts over the characteristic
time . All loads are relative to the rate of return to the∗1/r
equilibrium, r∗: the absolute costs are , , and∗ 2 ∗2Ar /2 B r

. The corresponding scalings of trait, space, and∗2 ∗k r /2
time are introduced in equations (4) and (5); all param-
eters are listed in tables 1 and 2.

Parameters in Nature

What are plausible values for the parameters A, B, k∗, and
r∗? First, consider A, a measure of the load due to genetic
variance around the optimum. Since Lande and Arnold
(1983) renewed interest in the quantitative genetics of wild
populations, there have been hundreds of studies of the
strength of stabilizing selection and additive genetic var-
iation in nature. The observed distribution (Kingsolver et
al. 2001) of the standardized quadratic selection gradient,
gi, is wide and fairly symmetrical on the continuum of
stabilizing ( ) to disruptive selection ( ), with theg ! 0 g 1 0i i

median (tilde) for stabilizing selection ˜�g pi, �

, but ranging from 1.5 to 0. This corre-·Ṽ /(2V ) p 0.1P S

sponds to rather than ,2V /V p 5/(1 � h ) V /V p 20S E S E

which used to be the common assumed value (see Lande
1975; Johnson and Barton 2005). If we take heritability

(which implies that , where the2h p 1/2 V p V � VA E R

components of VR are all nonadditive components of ge-
netic variance), the median of per mea-2 ∗A p V h /(r V )P S

sured trait is for and, mostly, .· ·∗Ã p 0.1 r p 1 A ! 2
Burt (1995, 2000) reviewed evidence on the additive

genetic variance for fitness and made an interesting ar-
gument concerning (in our notation) the scaled dispersal
load, B2. He pointed out that the total dispersal load can
be estimated from transplant experiments in which indi-
viduals are moved from their native location or are fer-
tilized by pollen from elsewhere. This dispersal load must
be balanced against the increase in relative mean fitness
due to selection, which equals the standardized additive

variance in fitness ( ).22DW/W p h Var (W )/W p VW

Now suppose that we can identify a principal component
(of measured traits) that explains most of the variance in
the reproductive success due to dispersal across the spatial
gradient. Then, B can be related to the combined genetic
load (A) for this component. By dispersal of a distance j,
fitness decreases by . The decrease in fitness due to2 ∗2B r
dispersal and mutation is at equilibrium, balanced by a
corresponding increase via additive variance in fitness, VW;
if we ignore mutation, (where W is the fitness2 ∗2V p B rW

in discrete time, and ). Burt¯DW/W ≈ D log (W ) ≈ Dr
(1995, 2000) reviewed a few estimates for the total dispersal
load and reported a median of and, mostly,·2 ∗2B p 0.02/r

.2 ∗2B ≤ 0.1/r
How fast might environmental optima change through

time? In reality, change may occur over all timescales,
rather than as a simple linear change as assumed here.
However, fast changes will average out, and slow changes
will have a negligible effect; we are concerned with changes
that occur over the joint evolutionary and ecological time-
scale. The load from a perfectly adapted population, due
to a changing optimum over characteristic time , is∗1/r

. We can get an estimate of a load2 ∗2 ∗2 ∗k /(2r V ) p k r /2S

due to a temporally changing environment from the speed
of advance of the range due to temporal change in the
environment. This speed (in terms of dispersal ranges, as

), at which a point population density∗ ∗ 1/2c p c/j(2/r )
moves in space, is when or . We∗ ∗ ∗ 2c ≈ k /B b r B A K 2B
give an example of one well-studied, fast-advancing spe-
cies: the butterfly Hesperia comma is advancing at a rate
of km per generation due to rising temperature·c p 0.63
(Thomas et al. 2001), while its expected dispersal distance
is km (as measured by Hill et al. 1996 for the·

j p 0.1
first nine generations). Approximately, the load due to a
temporally changing optimum is at equi-∗2 ∗ 2 2k r /2 ≈ (c/j) B
librium; using the medians for B and r∗, we get an estimate
of k∗ of about 2.7 (this is an overestimate, because the
range will expand faster than would follow from a model
with diffusive migration as a result of occasional long-
distance dispersal, and j is necessarily going to be an un-
derestimate to some extent, because migrants a long dis-
tance away will not be measured and dispersal may
increase during expansion). Perhaps as a better approach,
the load due to the temporal change in the optimum could
be estimated directly by comparing reproductive success
between progeny of a current and a significantly older
generation (e.g., studying organisms with a long dor-
mancy, using seeds or diapausing invertebrates as in
Decaestecker et al. [2007]).

Finally, the characteristic time is given by the inverse
of the strength of density dependence, , where r∗ is∗1/r
the rate of return toward the equilibrium at carrying
capacity : .∗ˆ ¯n r p ��/�n �n/�tF p �n �r/�nFˆ ˆm npn npnm m
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From Sæther et al. (2005), we see that values of D {
, where lDt is the growth rate perDt�� log (l )/� log (n)F ˆnpnm

generation, lie mostly between 0 and 2.5. In appendix D,
we show that D is approximately equivalent to r∗, and
thus, the median for r∗ is around 1. Also, for logistic
growth, the intrinsic growth rate gives the upper boundr̄
for r∗: Grosholz’s (1996) study provides for some in-r̄
vasive species: the range of to 10, with a median�1r p 10
of again around 1 (see also Case and Taper 2000).∗r̄ ≤ r
The importance of strength of density dependence for
limits to species range and behavior at the margins has
also been discussed in a recent article by Filin et al.
(2008).

The above rough overview gives the estimates for the
measure of standing genetic load, A, at (generally,·Ã p 0.1
!2). The known (few) estimates of total dispersal load give

at (generally, !0.3). From the anecdotal·1/2B̃ 0.02 p 0.15
butterfly example, we see that some populations can re-
spond to strong selection due to a temporally changing
optimum, ; the indirectly estimated value should be∗2k /2
taken with caution, perhaps on the order of 1. In the
examples above, all loads are given relative to the char-
acteristic time . The strength of density dependence,∗1/r
r∗, is mostly !2.5, and above it is set to around 1. We
return to the ways of relating a standing genetic load to
the (total) dispersal and/or temporal loads in the next
section. Ideally, we would like to get all three loads and
the rate of return to the equilibrium, r∗, estimated for one
species, as they may well be correlated. We have not found
such data, however, and the above paragraphs are intended
to give insights into plausible ranges and possible esti-
mation methods as well as to illustrate the meaning of the
load parameters.

Limitations, Predictions, and Nature

Out of an infinite number of possible scenarios one could
think of, we chose a particular simple model of uncor-
related temporal and spatial change and assessed adap-
tation in a single additive trait. The population dynamics
are simple (e.g., no Allee effect) and deterministic, al-
though genetic drift could have a qualitative effect on the
results regarding species range (see Butlin et al. 2003;
Alleaume-Benharira et al. 2006); certainly, drift would fur-
ther limit adaptation at low densities at the edge of the
species range. Large asymmetries in carrying capacity can
also impede adaptation deterministically in the subpop-
ulation, with little contribution to the total reproduction
(see Kawecki et al. 1997). Another obvious extension is to
include the age structure of the population (see Charles-
worth 1980): the spatial gradient can be thought of as
“blurred” with the standard deviation as a function of the
change in the environment over the average generation

time, kDt, which would lead to an increase in variance due
to the temporal change in the optimum.

We find it surprising that, when the environmental op-
timum moves in time, genetic variance does not increase
from the value maintained by dispersal across the spatial
gradient. An optimum changing smoothly over sufficiently
long time periods (relative to the width of the fitness func-
tion) can lead to a significant increase in variance when
recombination is high (Bürger and Lynch 1995; Kon-
drashov and Yampolsky 1996; Bürger 1999, 2000; Waxman
and Peck 1999). According to Bürger’s theoretical predic-
tions based on dynamics of underlying cumulants of the
genotypic distribution, genetic variance should increase
with the lag behind the optimum multiplied by the skew-
ness of the distribution. However, as the equations do not
form a closed system, it is unclear how skewness increases
as the optimum moves in time. (Both the lag and the
skewness decrease with the variance.) We see no increase
in variance; the distribution remains Gaussian, with skew-
ness of 0.

Although we can think of genetic variance as being con-
strained due to interactions with other traits, we do not
explicitly model interactions. It is well known that co-
variance between traits can pose a significant constraint
on the response to selection on the trait mean (see An-
tonovics 1976; Grant and Grant 1995; Etterson and Shaw
2001), and it also influences the variance: if variance of a
correlated trait decreases, for example, due to stabilizing
selection, so then would the variance of our focal trait (see
Pearson 1903; Lande and Arnold 1983; eq. [11]). Our
model also does not include genotype-by-environment in-
teractions, which can readily extend the range of favorable
habitat (Nussey et al. 2005). Perhaps more importantly,
the population genetic model for an additive trait follows
only allele frequencies, and not genotypes. Therefore, these
results only apply with linkage equilibrium, under weak
selection. Sensitivity of our results toward specific scenar-
ios, which violate our assumptions, can be numerically
and experimentally tested.

A recent preliminary study by Bridle et al. (2009) reveals
results that are reasonably consistent with some of the
predictions of Kirkpatrick and Barton (1997), but as far
as we are aware, no study provides the data needed to test
any of the predictions above. What could be done in prin-
ciple? The total dispersal load (B2) could be measured
directly by making transplants between different places and
finding the decrease in fitness with transplant distance,
measured relative to the standard deviation of dispersal
distance. Similarly, the load due to change through time
( ) could in principle be measured by comparing the∗2k /2
fitnesses of individuals from the present population with
the fitnesses of those in the past (e.g., using diapausing
individuals from sediment caves, as in Decaestecker et al.
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2007). For all loads, the time should be scaled relative to
the rate of return to equilibrium, . The load due to∗1/r
additive genetic variance in specific traits ( ) can beA/2
measured by comparing the fitnesses of those at the pop-
ulation mean with the fitnesses of those that are some
standard deviations from the mean; heritability would also
need to be measured. However, unlike the other two loads,
we do need to know about the traits: what matters is the
loss of fitness with variance along a particular axis in trait
space, defined by the change in mean through time and
along the transect. However, finding this axis is a not a
trivial task in the real world. If we know the trait axis,
then we can readily measure the load due to genetic var-
iance along the axis. If we do not know the trait axis, then
we could measure the excess variance in fitness between
clones of the parents and their offspring as a function of
distance between the parents. Replicates of parents can be
ideally obtained from an organism capable of both asexual
and sexual reproduction; however, in principle, one could

also reintroduce inbred lines. If the traits involved were
additive, this would give us the total standing genetic load
directly. Obtaining the load parameters allows us to assess
the key predictions of the model; most obviously, we can
ask whether there is evidence for a critical gradient, Bc,
above which uniform adaptation tends to collapse.
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APPENDIX A

Simple Regulation

With simple regulation, we assume that local population density grows with the average fitness :¯ ¯r(z)

¯grn p Ke , (A1)

where reflects the carrying capacity and is the intensity of density-dependent regulation. This is a simplificationK 1/g
of the real population dynamics, because we omit the effect of dispersal. However, it has the advantages of being
readily solvable and that the logarithmic model converges to it near equilibrium. Neglecting migration, at equilibrium
of the logarithmic model we have , and hence, using the formula for the logarithmic model¯ ¯r p r � r p 0 r pe g e

, we recover , as for simple regulation. (In the main text, rv gives the growth rate when¯g(r �r )v gr � 1/g log (n/K) n p Kev

the mean phenotype is perfectly adapted; in the logarithmic model , it is set to 0.)n p K
With simple regulation, the genetic component of fitness

2(z � v(x, t))
r(z) p r � , (A2)v 2VS

is a function of the adaptation of phenotype z at position x at time t, and the average fitness determines the size¯ ¯r(z)
of population (eq. [A1]):

2¯(z(x) � v(x, t)) V (x)P¯ ¯r(z) p r � � . (A3)v 2V 2VS S

It follows from the above equations that, just as for a fixed environmental gradient (Kirkpatrick and Barton 1997; eq.
[1]), the mean phenotype changes as

2 2¯ ¯ ¯ ¯ ¯�z j � z �z � bx � kt �z �z
2p � V � j g b � . (A4)A2 [ ( )]�t 2 �x V �x �xS

We can immediately see a solution where the population adapts as the optimum moves: the trait mean is z̄ p bx �
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, lagging behind the optimum by . If there is no variance in the trait ( ), a solution exists onlykt � a a p kV /V V p 0S A A

for an optimum fixed in time, . Population density is uniform in space, atk p 0 n p K exp {g[r � V /(2V ) �v P S

. High genetic variance allows the population to maintain its trait mean closer to the changing optimum,2 2k V /(2V )]}S A

but the population growth rate also decreases with phenotypic variance (by ), and so there is an optimalV /(2V )P S

variance when a population has the highest density: , as predicted by Lande and Shannon (1996) for2 2 2 1/3V p (2k h V )A S

a panmictic population.
We continue with detailed discussion of the solutions after rescaling the model, following equations (4) and (5).

The scaled growth rate is then

r̄ r 1 Av ∗ 2R p p � (Z � BX � k T) � . (A5)∗ ∗ 2r r 2 2h

Now, the rescaled trait mean changes as follows:

2�Z � Z �Z �Z
∗p � (BX � k T � Z) A � 2 B � . (A6)

2 ( )[ ]�T �X �X �X

As in the case of the environmental gradient fixed in time (Kirkpatrick and Barton 1997), we get two locally stable
equilibrium solutions for the trait mean : one with uniform adaptation, where the gradient in∗ ∗ ∗Z p b X � q T � a
trait mean matches the environmental gradient, (and hence, the range is unlimited), and another where∗b p B
adaptation is constrained by genetic variance, the gradient in trait mean is shallower than the environmental gradient
( ), and species’ range is limited. With simple regulation, however, adaptation to temporal change occurs only∗b ! B
for the uniform solution. (This is not the case for joint regulation, as assessed later.) As the optimum changes over
time, the trait mean changes at the same rate as the optimum ( ) and lags behind the optimum uniformly by∗ ∗q p k

. Population density is uniform at , where .∗ ∗ ∗2 2 2 ∗a p k /A n p exp (R) p exp [r � 1/2(k /A � A/h )] r { r /r0 0 v

In the second solution, the population is adapted on a limited range and the gradient in trait mean ∗ ∗b p b p�

is shallower than the environmental gradient (see fig. 2, thin lines). Such a solution exists only2 1/2B/2[1 � (1 � 2A/B ) ]
if the environment changes sufficiently sharply relative to the genetic variance, (see fig. 3, thin curve). The1/2B 1 (2A)
population density is highest where the line intersects the trait optimum (on the infinite range, the∗ ∗Z p b X � a
shift a∗ of the trait mean is arbitrary), and population density declines as a∗ 2 2 2n p exp {r � 1/2[(B � b ) X � A/h ]}0

Gaussian from the center of the range, with variance given by the difference between gradient in trait mean and
environmental gradient, . As the optimum changes in time, the trait mean stays constant: . Thus,∗ ∗1/(B � b ) q p 0
locally, the population becomes extinct: the population density (given by the simple regulation) simply tracks the
changing optimum in space, moving at speed , as long as there is a suitable habitat available.∗ ∗ ∗c p k /(B � b )

On an infinite (spatial) range, both abovementioned solutions (with and ) are locally stable whenever∗ ∗ ∗b p b b p B�

they exist ( ). The third, unstable solution, (see fig. 2, dashed line), determines1/2 ∗ 2 1/2B 1 (2A) b p B/2[1 � (1 � 2A/B ) ]�

the global stability. If the space is effectively infinite and the initial gradient in trait mean, , is above the unstable∗b0

solution with intermediate gradient, , the population always evolves toward uniform adaptation. Conversely, if∗b�

, the trait mean evolves toward the solution with the shallow gradient in trait mean,∗ ∗ ∗b ! b b p B/2[1 � (1 �0 � �

, and the range is limited at equilibrium. Note that, as B steepens, , so that uniformly adapted solutions2 1/2 ∗2A/B ) ] b r B�

can be disturbed by smaller perturbations and B collapses to the solution with limited range, with . The∗ ∗b p b�

gradients and, hence, the stability are independent of the rate at which the optimum moves in time. When available
habitat is limited and there is no gene flow over the margins, however, adaptation collapses from the margins toward
the trait mean with the shallow gradient, , whenever a solution with limited adaptation exists (see “Simple Regulation”∗b�

in app. B; no gene flow over the margins is represented by either reflecting or absorbing boundary conditions, when
in the first case, migrants intending to migrate over the margins move back to the range, and in the second case, they
die). This corresponds to similar results for local stability under a static environmental gradient (see table 17.1 and
the appendix in Kirkpatrick and Barton 1997).
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APPENDIX B

Stability

Simple Regulation

With simple regulation, we need to follow only the evolution of the trait mean, (eq. [A6]). We introduce a perturbationZ
to the equilibrium solution for trait mean, obtaining . Equilibrium with uniform∗ ∗ ∗Z p b X � q T � a � �(X, T)�

adaptation has , , and , and substituting into equation (A6) leads to∗ ∗ ∗ ∗ ∗b p B a p k /A q p k Z�

2�� � �
2p � A� � O(� ).

2�T �X

As for the static environment (Kirkpatrick and Barton 1997), the uniform adaptation is locally stable, as perturbation
always decreases over time, without migration, at a rate . Perturbation around limited adaptation, where�l p A

and (a∗ is arbitrary, set to 0), grows at a rate∗ 2 1/2 ∗b p B/2[1 � (1 � 2A/B ) ] q p 0

2 2�� � � �� � � ��∗ ∗ 2 ∗ 2p � 2X(B � b )(2b � B) � O(� ) p � 2X (A � Bb ) � O(� ),c2 2�T �X �X �X �X

where is the complementary solution for adaptation on limited range ( for , and vice versa). Because the∗ ∗ ∗b b bc � �

central position of such a population is arbitrary, we can set the central location and the perturbation to 0�(0, T)
without further loss of generality. For the gradient to change, the perturbation � has to grow away from the origin,
so would be 10. Such perturbation changes at a rate , which is always negative for the solution∗X ��/�X 2(A � Bb )c

with shallower gradient, ; thus, this solution is always locally stable. The converse holds∗ 2 1/2b p B/2[1 � (1 � 2A/B ) ]�

for the locally unstable steeper solution. Global stability has been assessed numerically: the unstable solution ∗b p�

acts as a repeller, and the gradient in trait mean evolves toward perfect adaptation if the initial2 1/2B/2[1 � (1 � 2A/B ) ]
gradient b0 in trait mean is greater than and toward the solution with shallow gradient if b0 is smaller than .∗ ∗b b� �

The equilibrium gradient in trait mean is independent of the rate the optimum changes in time, k∗, as is the stability.

Joint Regulation: Stability for , Logarithmic Modelk p 0

Under joint regulation, we follow both the evolution of the trait mean (eq. [6]) and the dynamics of the population
density (eq. [7]). For uniform adaptation, around equilibrium at we have and∗k p 0 b p B � �(X, T) N p 1 �

. Linearizing givesn(X, T)

2�� � � �n
2p � 2B � A� � O(n ) � O(�n),

2�T �X �X

2�n � n 1
2 2p � n � � � O(n ).

2�T �X 2

Hence, without migration, the perturbation changes at rates and . The effect of the terml p �A l p �11 2

on the rate of growth of the perturbation is of order (from ), and hence it can be omitted for22B �n/�X O(� ) �n/�T
any , . The fixed point is a stable node unless A is exactly 1; the solution with perfect adaptationA ( 1 Fl F ( Fl F ( 01 2

is always locally stable on the infinite range.
For adaptation on limited range, around equilibrium we have (for ) and∗ ∗k p 0 b p Bf � �(X, T) N p

. Linearizing gives
∗ 2 ∗�z �X z /2e � n(X, T)
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2 ∗�� � � �� z �n ∗ 2 ∗∗ z �X z /2 2p � X � 2Bf � nXz e � A� � O(n ) � O(�n),
2 ( )�T �X �X 2 �X

2 ∗�n � n z∗ 2 2 2p � n 1 � z � X � �XB(1 � f) � O(� ) � O(n ).
2 ( )�T �X 2

Under joint regulation, obtaining eigenvalues for a nonuniform solution appears to be intractable even for ,∗k p 0
so we assess the stability numerically and by using a discrete lattice with a stepping-stone migration (not shown).
Also, we know that the stability of the equilibrium is sensitive to behavior on the boundaries, which is easier to address
in a stepping-stone model.

APPENDIX C

Two-Allele Model

Scaling

To scale the two-allele model, we define , where . Equation (10) then becomes∗ 2A { v /(r V ) v p 1/2 a nm S lmax max

2�p � p � log (n) �p A gi i i m m∗p � 2 � p q (p � q � 2d ) � (p � q ), (C1)i i i i i i2�T �X �X �X n 2nl l

where and , and scaled genetic variance is
n l∗ 1/2 ∗ 1/2 1/2d p (Z � BX)(n /2A ) Z p z/(r V ) p (2A /n ) � p � q V pl m S m l i iip1

. Hence, the scaled average effect of gene substitution is . The last term is
n l∗ 1/2V /(r V ) p 4A /n � p q a p (2A /n )A S m l i i ∗ m lip1

mutation rate scaled by the intensity of density-dependent selection, r∗: , where is the genomic∗g { U/r U p 2n mm l

mutation rate. (The scaling is the same as in Barton [2001], apart from the fact that here, V is not scaled directly
relative to the maximum variance possible, and hence it is consistent with and maintains the same scale as theZ
parameter describing decrease of population density due to genetic variance, A.) When the solution is uniform, the
second term vanishes; thus, if we are interested in the accuracy of our predictions for the uniform solution, we can
drop the term . Including this term only leads to temporarily increased fluctuations, because the2� log (n)/�X �p/�X
clines take longer to settle.

Iterating the Two-Allele Model on a Lattice, with Discrete Time

We follow the population density in the original units in an attempt to match the continuous equation �n/�T p
with a stepping-stone model. After selection, the population density is2 2(� n/�X ) � Rn

′n (X, T ) p n(X, T)(1 � dTR), (C2)w

where the growth rate is either logarithmic,

∗ 2(Z � BX � k T)n V
R p r � log � � , (C3)0 2( )[ ]K 2 2h

or logistic,

∗ 2(Z � BX � k T)r n VmR p 1 � � � . (C4)∗ 2( ) [ ]r K 2 2h

Migration is after selection,
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m′ ′ ′ ′n(X, T � dT) p n (X, T ) � (n (X � dX, T ) � n (X � dX, T ) � 2n (X, T )), (C5)w w w w2

which is an accurate description of the continuous model to the order of . The carrying capacity is set to2O(dT)
, and heritability is ; for the logistic model, .2 ∗K p 1 h p 1 r /r p 1m

After selection, the allele frequencies are

dT gm′ ∗p (X, T ) p p (X, T) � (A p (X, T)q (X, T)(p (X, T) � q (X, T) � 2d ) � (p (X, T) � q (X, T)), (C6)i, w i m i i i i i in 2l

and, after migration, they are

m′ ′ ′ ′p (X, T � dT) p p (X, T ) � (p (X � dX, T ) � p (X � dX, T ) � 2p (X, T )). (C7)i i, w i, w i, w i, w2

We use a stepping-stone model on a spatial lattice with spacing and time step , where the migration ratedX dT m ≤
is scaled according to the spacing, . In relation to the continuous model, variance in dispersal is21/2 m p 2dT/dX

approximately , and in the scaled continuous model, it is . Throughout this study, Mathematica2 2 2j ≈ mdX j /2 p dT
(Wolfram Research) was used to obtain numerical solutions and to manipulate some formulas.

APPENDIX D

The Characteristic Time

The characteristic time, which measures how long it takes the population to return to equilibrium, is given by the
inverse of the strength of density dependence , where r∗ is the rate of return toward the equilibrium at carrying∗1/r
capacity, : (Kirkpatrick and Barton 1997). Lande et al. (2002) and Sæther∗ˆ ¯n r p ��/�n �n/�tF p �n �r/�nFˆ ˆm npn npnm m

et al. (2005) studied this measure in detail and gave estimates both relative to a year, ,g { �� log (l)/� log (n)F ˆd npnm

and as change per generation, (where Dt is generation time). Their growth rateDtD { Dtg p �� log (l )/� log (n)F ˆd npnm

per generation is lDt; therefore, after t generations, population density is . Throughout this article, “time”Dttn(t) p n l0

indicates generations: with simple regulation (and ignoring mutation), we have . Between the continuousr̄tn(t) p n e0

and the discrete times, , and the measures of r∗ and D are approximately equivalent. From Sæther et al.Dtr̄ ∼ log (l )
(2005), we see that values of D lie mostly between 0 and 2.5. We include another estimate from Krüger et al. (2002),
where continuous-time approximation to their discrete-time autoregressive model directly gives the estimate for r∗ for
the logarithmic model, with mean strength of density dependence . The overall median for r∗ is·∗r̄ p �(1 � b ) p 11

thus around 1.
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